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1 Introduction

Spectrum of non-BPS branes has tachyon, massless and infinite tower of massive states.

Even though the mass scale of tachyon and the massive states are the same, there are

various arguments that indicate there must be an effective theory for non-BPS branes that

includes only the tachyon and the massless states [1]. The effective theory should have two

parts, i.e.,

Snon−BPS = SDBI + SWZ

where SDBI/SWZ should be an extension of DBI/WZ action of BPS branes in which the

tachyon mode of non-BPS brane are included appropriately.

One method for finding these effective actions is the BSFT. In this formalism the

kinetic term of tachyon appears in the DBI part as [2, 3]

SDBI ∼
∫

dp+1σ e−2πT 2 (

F (2πα′DaTDaT ) + · · ·
)

, F (x) =
4xxΓ(x)2

2Γ(2x)
(1.1)

where dots refer to the gauge field couplings. When tachyon is zero, they are given by the

DBI action. The WZ term in this formalism is given by [2, 3]

SWZ = µ′p

∫

Σ(p+1)

C ∧ Str ei2πα′F (1.2)

in which the curvature of superconnection is

iF =

(

iF − β′2T 2 β′DT

β′DT iF − β′2T 2

)

,
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and β′ is a normalization constant with dimension 1/
√
α′.

Another method for studying the effective action of non-BPS branes is the S-matrix

method. In this formalism the kinetic term of tachyon appear in the DBI action as [4, 6]

SDBI ∼
∫

dp+1σSTr

(

V (T iT i)

√

1 +
1

2
[T i, T j ][T j , T i] (1.3)

×
√

− det(ηab + 2πα′Fab + 2πα′DaT i(Q−1)ijDbT j)

)

,

where V (T iT i) = e−πT iT i/2, and

Qij = Iδij − i[T i, T j] (1.4)

The superscripts i, j = 1, 2, i.e., T 1 = Tσ1, T
2 = Tσ2 and there is no sum over i, j. σ1 and

σ2 are the Pauli matrices. After expanding the square roots one should choose two of the

tachyons to be T 2 and the others to be T 1. The trace in above equation must be completely

symmetric between all matrices of the form Fab,DaT
i, [T i, T j] and individual T i of the

potential V (T iT i). The above action is consistent with the momentum expansion of the S-

matrix element of four tachyons, the S-matrix element of one RR and three tachyons [4, 6]

and with the momentum expansion of the S-matrix element of four tachyons and one

gauge field [7]. Around the stable point of the tachyon potential, the above action reduces

to the usual tachyon DBI action [8–11] with potential T 4V (T 2). The WZ part in this

formalism, on the other hand, is given by the same WZ action as in the BSFT in which

the normalization of tachyon is β′ = 1
π

√

6 ln(2)
α′ for non-BPS branes [4] and β = 1

π

√

2 ln(2)
α′

for brane-anti-brane [5]. In fact the structure of superconnection in the WZ part has been

found first by the S-matrix method in [12].

In this paper, we would like to examine the above actions with the S-matrix element of

one RR, two gauge fields and one tachyon. So in the next section we calculate this S-matrix

element in string theory. In section 3, we find the momentum expansion of the amplitude

and compare it with the various Feynman amplitudes resulting from the couplings in the

above actions and their higher derivative extensions.

2 The four-point amplitude

To calculate a S-matrix element, one needs to choose the picture of the vertex operators

appropriately. The sum of the superghost charge must be -2 for disk level amplitude. On

the other hand, the vertex operators of a non-BPS D-brane carry internal CP matrix [13].

Using the fact that the picture changing operator also carries internal CP matrix σ3 [14],

one realizes that a vertex operator carries different internal CP matrices depending on its

superghost charges. It has been speculated in [6] that the S-matrix element of n external

states is independent of the choice of the picture of the external states only when one

includes the internal CP matrix in the vertex operators.

When tachyon is set to zero, the effective field theory of non-BPS branes/brane-

antibrane must reduce to the effective field theory of BPS branes in which there is no
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internal CP matrix. This indicates that the massless fields in the effective field theory of

non-BPS branes/brane-antibrane must carry identity internal CP matrix. For example,

the RR field in the effective field theory of brane-antibrane must carry identity matrix

because when tachyon is set to zero the WZ action of brane-antibrane reduces to the WZ

action of two stable BPS branes. This internal CP matrix is contributed to the RR vertex

operator in (0)-picture. In other pictures, the internal CP matrix is different depending

on its superghost picture. It has been shown in [13] that the RR vertex operator of a

non-BPS brane in (0)-picture must carry the internal CP matrix σ1. This vertex operator

in (−1)-picture then must carry the internal matrix σ3σ1.

Hence, the S-matrix element of one RR field, two gauge fields and one tachyon in the

world volume of non-BPS branes is given by the following correlation function:

AAATC ∼
∑

non−cyclic

∫

dx1dx2dx3dzdz̄ 〈V (0)
A (x1)V

(0)
A (x2)V

(−2)
T (x3)V

(0)
RR(z, z̄)〉 (2.1)

The internal CP factor is Tr (IIσ1σ1) = 2 for 123 ordering and is Tr (Iσ1Iσ1) = 2 for 132

ordering. The internal CP matrix of tachyon in (−2)-picture is the same as the CP matrix

of this operator in (0)-picture which is σ1. It is easier to calculate the S-matrix element in

the following picture:

AAATC ∼
∑

non−cyclic

∫

dx1dx2dx3dzdz̄ 〈V (0)
A (x1)V

(0)
A (x2)V

(−1)
T (x3)V

(−1)
RR (z, z̄)〉 (2.2)

The CP factor in this case is Tr (IIσ2σ3σ1) = 2i for 123 ordering and is Tr (Iσ2Iσ3σ1) = 2i

for 132 ordering. According to the speculation in [6], the difference between the above two

S-matrix elements is a factor of i when the internal CP factors are included. So to calculate

the S-matrix element (2.1) in which the vertexes carry the same internal CP matrices as

the effective field theory, we first calculate the amplitude (2.2) and then multiply the result

by i.

The vertex operators in (2.2) are given as1

V
(−1)
T (y) = e−φ(y)e2ik·X(y)λ⊗ σ2

V
(0)
A (x) = ξi

(

∂Xi(x) + 2ik·ψψi(x)

)

e2ik.X(x)λ⊗ I

V
(−1)
RR (z, z̄) = (P−H/ (n)Mp)

αβe−φ(z)/2Sα(z)eip·X(z)e−φ(z̄)/2Sβ(z̄)eip·D·X(z̄) ⊗ σ3σ1

where k is the momentum of open string that for tachyon satisfies the on-shell condition

k2 = 1/4, and λ is the external CP matrix in the U(N) group. We refer the interested

reader to [15] for our conventions on the RR vertex operator.

To calculate the correlators in (2.2), one must use the following standard propagators:

〈Xµ(z)Xν(w)〉 = −ηµν log(z − w),

〈ψµ(z)ψν(w)〉 = −ηµν(z − w)−1 ,

〈φ(z)φ(w)〉 = − log(z − w) , (2.3)

1In string theory side, our conventions set α
′ = 2.
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Introducing x4 ≡ z = x+ iy and x5 ≡ z̄ = x− iy, the amplitude factorizes to the following

correlators for 123 ordering:

AAATC ∼
∫

dx1dx2dx3dx4dx5 (P−H/ (n)Mp)
αβξ1iξ2jx

−1/4
45 x

−1/2
43 x

−1/2
53 (I1 + I2 + I3 + I4)

×Tr (λ1λ2λ3)Tr (IIσ2σ3σ1) (2.4)

where xij = xi − xj and

I1 = <: ∂Xi(x1)e
2ik1.X(x1) : ∂Xj(x2)e

2ik2.X(x2) : e2ik3.X(x3) : eip.X(x4) : eip.D.X(x5) :>

×<: Sα(x4) : Sβ(x5) :>

I2 = <: ∂Xi(x1)e
2ik1.X(x1) : e2ik2.X(x2) : e2ik3.X(x3) : eip.X(x4) : eip.D.X(x5) :>

×<: Sα(x4) : Sβ(x5) : 2ik2·ψψj(x2) :>

I3 = <: e2ik1.X(x1) : ∂Xj(x2)e
2ik2.X(x2) : e2ik3.X(x3) : eip.X(x4) : eip.D.X(x5) :>

×<: Sα(x4) : Sβ(x5) : 2ik1·ψψi(x1) :>

I4 = <: e2ik1.X(x1) : e2ik2.X(x2) : e2ik3.X(x3) : eip.X(x4) : eip.D.X(x5) :>

×<: Sα(x4) : Sβ(x5) : 2ik1·ψψi(x1) : 2ik2·ψψj(x2) :>

One can perform easily the correlators of X using the corresponding propagator in (2.3).

To find the correlator of ψ, we use the following Wick-like rule [16] for the correlation

function involving an arbitrary number of ψ’s and two S’s:

〈ψµ1(y1) . . . ψ
µn(yn)Sα(z)Sβ(z̄)〉= 1

2n/2

(z − z̄)n/2−5/4

|y1 − z| . . . |yn − z|
[

(Γµn...µ1C−1)αβ

+〈〈ψµ1(y1)ψ
µ2(y2)〉〉(Γµn...µ3C−1)αβ ± perms

+〈〈ψµ1(y1)ψ
µ2(y2)〉〉〈〈ψµ3 (y3)ψ

µ4(y4)〉〉(Γµn...µ5C−1)αβ

±perms + · · · ] (2.5)

where dots mean sum over all possible contractions. In above equation, Γµn...µ1 is the

totally antisymmetric combination of the gamma matrices and the Wick-like contraction

is given by

〈〈ψµ(y1)ψ
ν(y2)〉〉 = ηµν (y1 − z)(y2 − z̄) + (y2 − z)(y1 − z̄)

(y1 − y2)(z − z̄)

= 2ηµνRe[(y1 − z)(y2 − z̄)]

(y1 − y2)(z − z̄)
(2.6)

where in the second line the fact that y1, y2 are real has been used. One can use the above

formula to find the correlation function of two S’s and an arbitrary number of currents.

The only subtlety in using the formula (2.5) for currents is that one must not consider the

Wick-like contraction for the two ψ’s in one current. Using this, one can easily find the

following standard results when there is no current and when there is one current:

<: Sα(x4) : Sβ(x5) :> = x
−5/4
45 C−1

αβ (2.7)

<: Sα(x4) : Sβ(x5) : ψmψi(x1) :> = −1

2
x
−1/4
45 x−1

14 x
−1
15 (ΓmiC−1)αβ

– 4 –
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In the second relation, we have not consider the Wick-like contraction for the two ψ’s since

both of them belong to one current. When there are two currents, the formula (2.5) gives

the following result:

I ′4 = <: Sα(x4) : Sβ(x5) : ψmψi(x1) : ψlψj(x2) :> (2.8)

=
1

4
x

3/4
45 (x14x15x24x25)

−1

{

(ΓjlimC−1)αβ +2
Re[x14x25]

x12x45

[

ηml(ΓjiC−1)αβ−ηmj(ΓliC−1)αβ

−ηil(ΓjmC−1)αβ + ηij(ΓlmC−1)αβ

]

+ 4

(

Re[x14x25]

x12x45

)2

(−ηmlηij + ηmjηil)C−1
αβ

}

Replacing the above spin correlators into (2.4) and performing the correlators over X, one

finds

AAATC∼
∫

dx1dx2dx3dx4dx5(P−H/ (n)Mp)
αβIξ1iξ2jx

−1/4
45 x

−1/2
43 x

−1/2
53

×
(

x
−5/4
45 C−1

αβ (−ηijx−2
12 + ai

1a
j
2) + ai

1(a
j
3)αβ + aj

2(a
i
4)αβ − 4k1mk2lI

′
4

)

(2.9)

where I ′4 is given in (2.8), and

I = |x12|4k1.k2|x13|4k1.k3|x14x15|2k1.p|x23|4k2.k3|x24x25|2k2.p|x34x35|2k3.p|x45|p.D.p

ai
1 = −iki

2

(

x42

x41x12
+

x52

x51x12

)

− iki
3

(

x43

x41x13
+

x53

x51x13

)

aj
2 = −ikj

1

(

x14

x42x12
+

x15

x52x12

)

− ikj
3

(

x43

x42x23
+

x53

x52x23

)

(aj
3)αβ = −ik2lx

−1/4
45 (ΓljC−1)αβ(x24x25)

−1

(ai
4)αβ = −ik1mx

−1/4
45 (ΓmiC−1)αβ(x14x15)

−1 (2.10)

One can show that the integrand is invariant under SL(2,R) transformation. Gauge fixing

this symmetry by fixing the position of the open string vertex operators as

x1 = 0, x2 = 1, x3 → ∞,

One finds the following integral:

∫

d2z|1 − z|a|z|b(z − z̄)c(z + z̄)d (2.11)

where d = 0, 1, 2 and a, b, c are given in terms of the Mandelstam variables:

s = −(k1 + k3)
2, t = −(k1 + k2)

2, u = −(k2 + k3)
2

The region of integration is the upper half complex plane. For d = 0, 1 the result is given

in [17], i.e.,

∫

d2z|1 − z|a|z|b(z − z̄)c(z + z̄)d=(2i)c2d π
Γ(1 + d+ b+c

2 )Γ(1 + a+c
2 )Γ(−1 − a+b+c

2 )Γ(1+c
2 )

Γ(−a
2 )Γ(− b

2)Γ(2 + c+ d+ a+b
2 )
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Extending the result in [17] to d = 2, one finds

∫

d2z|1 − z|a|z|b(z − z̄)c(z + z̄)d=(2i)c2d π
J1 + J2

Γ(−a
2 )Γ(− b

2)Γ(d+ 2 + c+ a+b
2 )

where

J1 =
1

2
Γ

(

d+
b+ c

2

)

Γ

(

d+
a+ c

2

)

Γ

(

− d− a+ b+ c

2

)

Γ

(

1 + c

2

)

J2 = Γ

(

d+ 1 +
b+ c

2

)

Γ

(

1 +
a+ c

2

)

Γ

(

− 1 − a+ b+ c

2

)

Γ

(

1 + c

2

)

Using the above integrals, one can write the amplitude (2.9) as

AAATC = A1 + A2 + A3 (2.12)

where

A1 ∼ −2iTr (λ1λ2λ3)ξ1iξ2jk1mk2lTr (P−H/ (n)MpΓ
jlim)(t+ s+ u+ 1/2)L3

A2 ∼ 2Tr (λ1λ2λ3)

{[

k2lξ2j (−2k2.ξ1L1 + 2k3.ξ1L2) Tr (P−H/ (n)MpΓ
lj)

−2k1.ξ2k2lξ1iTr (P−H/ (n)MpΓ
il)L1

]

−
[

1 ↔ 2

]

−L1

(

−tξ1iξ2jTr (P−H/ (n)MpΓ
ji) + 2k2lk1mξ1.ξ2Tr (P−H/ (n)MpΓ

lm)
)

}

A3 ∼ −2iTr (λ1λ2λ3)Tr (P−H/ (n)Mp)L3

[

−t(k3.ξ1)(k3.ξ2) + (k3.ξ2)(k2.ξ1)

(

s+
1

4

)

+(k3.ξ1)(k1.ξ2)

(

u+
1

4

)

+
1

2
(ξ1.ξ2)

(

u+
1

4

)(

s+
1

4

)]

The extra factor of i in A2 is coming from the extra factor of x45 = 2iy in this amplitude.

The functions L1, L2, L3 are the following:

L1 = (2)−2(t+s+u)−1π
Γ(−u+ 3

4)Γ(−s+ 3
4 )Γ(−t)Γ(−t− s− u)

Γ(−u− t+ 3
4)Γ(−t− s+ 3

4)Γ(−s− u+ 1
2)

L2 = (2)−2(t+s+u)−1π
Γ(−u+ 3

4)Γ(−s− 1
4)Γ(−t+ 1)Γ(−t− s− u)

Γ(−u− t+ 3
4)Γ(−t− s+ 3

4 )Γ(−s− u+ 1
2)

L3 = (2)−2(t+s+u)π
Γ(−u+ 1

4 )Γ(−s+ 1
4)Γ(−t+ 1

2)Γ(−t− s− u− 1
2)

Γ(−u− t+ 3
4)Γ(−t− s+ 3

4)Γ(−s− u+ 1
2)

From the poles of the gamma functions, one realizes that the scattering amplitude has

tachyon, massless and infinite number of massive poles. To compare the field theory which

has tachyon and massless fields e.g., the WZ action, with the above amplitude, one must

expand the amplitude such that the tachyon and massless poles of the field theory survive

and all other poles disappear in the form of contact terms. In the next section we will find

such expansion.

– 6 –
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3 Momentum expansion

Using the momentum conservation along the world volume of brane, ki
1 + ki

2 + ki
3 + pi = 0,

one finds the Mandelstam variables satisfy

s+ t+ u = −pip
i − 1/4 (3.1)

In general, it has been argued in [18] that the momentum expansion of a S-matrix element

should be around (ki +kj)
2 → 0 and/or ki·kj → 0. The case (ki +kj)

2 → 0 is when there is

massless pole in (ki + kj)
2-channel. One can easily observe that the amplitude (2.1) must

have massless pole only in (k1 +k2)
2-channel, so the momentum expansion must be around

k3.k1 → 0, k3.k2 → 0, (k1 + k2)
2 → 0

Using the on-shell relations k2
1 = k2

2 = 0 and k2
3 = 1/4, one can rewrite it in terms of the

Mandelstam variables as

s→ −1/4, u→ −1/4, t→ 0 (3.2)

The constraint (3.1) then indicates that pip
i → 1/4 which is possible only for euclidean

brane. This is consistent with the observation made in [4, 19] that the on-shell condition

implies that the S-matrix element can be evaluated only for non-BPS SD-branes [20].

Expansion of the functions L1, L2, L3 around the above point is

L1 = −π3/2

(

1

t

∞
∑

n=−1

bn(u+ s+ 1/2)n+1

+

∞
∑

p,n,m=0

ep,n,mt
p((s + 1/4)(u + 1/4))n(s+ u+ 1/2)m

)

L2 = −π3/2

(

1

(s+ 1/4)

∞
∑

n=−1

bn(u+ t+ 1/4)n+1

+

∞
∑

p,n,m=0

ep,n,m(s+ 1/4)p(t(u+ 1/4))n(t+ u+ 1/4)m
)

(3.3)

L3 = −π5/2

(

∞
∑

n=0

cn(s+ t+ u+ 1/2)n

+

∑∞
n,m=0 cn,m[(s + 1/4)n(u+ 1/4)m + (s + 1/4)m(u+ 1/4)n]

(t+ s+ u+ 1/2)

+

∞
∑

p,n,m=0

fp,n,m(s+ t+ u+ 1/2)p[(s+ u+ 1/2)n((s+ 1/4)(u + 1/4))m]





where the coefficients bn are exactly the coefficients that appear in the momentum expan-

sion of the S-matrix element of one RR, one gauge field and one tachyon vertex operators [4].

– 7 –
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Some of the coefficients bn, ep,n,m, cn, cn,m and fp,n,m are

b−1 =1, b0 =0, b1 =
1

6
π2, b2 =2ζ(3)

e2,0,0 =e0,1,0 =2ζ(3), e1,0,0 =
1

6
π2, e1,0,2 =

19

60
π4, e1,0,1 =e0,0,2 =6ζ(3)

e0,0,1 =
1

3
π2, e3,0,0 =

19

360
π4, e0,0,3 =e2,0,1 =

19

90
π4, e1,1,0 =e0,1,1 =

1

30
π4

c0 =0, c1 =
π2

3
, c2 =4ξ(3), c1,1 =

π2

3
, c0,0 =1

c1,0 =c0,1 =0, c3,0 =c0,3 =0, c2,0 =c0,2 =
π2

3
, c1,2 =c2,1 =−8ξ(3)

f0,1,0 =−2π2

3
, f0,2,0 =−f1,1,0=12ξ(3), f0,0,1 =4ξ(3)

(3.4)

L1 has massless pole in t-channel, L2 has tachyonic pole in s-channel and L3 has tachyonic

pole in (s+ t+ u)-channel. These poles must be reproduced in field theory by appropriate

couplings. The string amplitude (2.12) is non-zero for p = n+3, p = n−1 and for p = n+1.

Let us study each case separately.

3.1 p = n+ 3 case

This is the simplest case to consider. Only A1 in (2.12) is non-zero. The trace in A1 is:

Tr

(

H/ (n)MpΓ
jlim

)

= ±32

n!
ǫjlimi0···ip−4Hi0···ip−4

We are going to compare string theory S-matrix elements with field theory S-matrix ele-

ments including their coefficients, however, we are not interested in fixing the overall sign

of the amplitudes. Hence, in above and in the rest of equations in this paper, we have

payed no attention to the overall sign of equations. The string amplitude for electric RR

field then becomes

AAATC =∓ 32i

(p−3)!
(µ′pβ

′π1/2)Tr (λ1λ2λ3)ξ1iξ2jk1mk2lǫ
jlimi0···ip−4Hi0···ip−4(t+s+u+1/2)L3

where we have also normalized the amplitude by (µ′pβ
′π1/2). Apart from the group factor

the above amplitude is antisymmetric under interchanging the gauge fields . So the whole

amplitude is zero for abelian gauge group. The amplitude also satisfies the Ward identity,

i.e., the amplitude vanishes under replacing each of ξi → ki. Since (t+ s+ u+ 1/2)L3 has

no tachyon/massless pole, the amplitude has only contact terms. The leading contact term

is reproduced by the following coupling:

β′µ′p(2πα
′)3Tr (Cp−4 ∧ F ∧ F ∧DT ) (3.5)

and the non-leading order terms should be corresponding to the higher derivative extension

of the above coupling. This coupling is exactly given by the WZ terms (1.2) after expanding

the exponential and using the multiplication rule of the supermatrices [4].
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3.2 p = n− 1 case

The next simple case to consider is p = n− 1. Only A3 in (2.12) is non-zero for this case.

The trace in this amplitude is:

Tr

(

H/ (n)Mp

)

= ±32

n!
ǫi0···ipHi0···ip

Substituting this trace in A3, one finds

AAATC = ∓ 32i

(p+ 1)!
(β′µ′pπ

1/2)Tr (λ1λ2λ3)ǫ
i0···ipHi0···ipL3

{

− t(k3.ξ1)(k3.ξ2) (3.6)

+(k3.ξ2)(k2.ξ1)

(

s+
1

4

)

+ (k3.ξ1)(k1.ξ2)

(

u+
1

4

)

+
1

2
(ξ1.ξ2)

(

u+
1

4

)(

s+
1

4

)}

where we have also normalized the amplitude by (β′µ′pπ
1/2). The amplitude satisfies the

Ward identity and it is symmetric under interchanging the gauge fields. So the amplitude

is non-zero even for abelian case.

All terms in (3.6) have tachyon pole in the (s + t + u)-channel and infinite contact

terms. We consider only the tachyon pole and show that they can be reproduced by WZ

coupling Cp ∧ DT and the higher derivative two-gauge-two-tachyon couplings that have

been found in [21].

To this end, consider the amplitude for decaying one R-R field to two gauge fields

and one tachyon in the world-volume theory of the non-BPS branes which is given by the

following Feynman amplitude:

A = V α(Cp, T )Gαβ(T )V β(T, T3, A1, A2) (3.7)

where the tachyon propagator and the vertex V α(Cp, T ) are given as

Gαβ(T ) =
iδαβ

(2πα′)Tp(−k2 −m2)

V α(Cp, T ) = 2iµ′pβ
′(2πα′)

1

(p + 1)!
ǫi0···ipHi0···ipTr (Λα) (3.8)

In above vertex, Tr (Λα) is non-zero only for abelian matrix Λα. The vertex V β(T, T3, A1, A2)

can be derived from the higher derivative of two-gauge-two-tachyon couplings [21] (equation

(29) of [21]). They are the higher derivative extension of two-gauge-two-tachyon couplings

of the tachyon action (1.3). Using the fact that the off-shell tachyon is abelian, one finds

the vertex V β(T, T3, A1, A2) to be

2iTp(πα
′)(α′)2+n+m(an,m + bn,m)Tr (λ1λ2λ3Λ

β)

[

− t(k3.ξ1)(k3.ξ2) + (k3.ξ2)(k2.ξ1)

(

s+
1

4

)

+(k3.ξ1)(k1.ξ2)

(

u+
1

4

)

+
1

2
(ξ1.ξ2)

(

u+
1

4

)(

s+
1

4

)](

(k3 ·k1)
n(k3 ·k2)

m+(k3 ·k1)
n(k1 ·k)m

+(k ·k2)
m(k ·k1)

n + (k1 ·k)n(k3 ·k1)
m + (k3 ·k2)

m(k2 ·k)n + (k ·k2)
n(k1 ·k)m + (k3 ·k2)

n

×(k1 ·k3)
m + (k3 ·k2)

n(k2 ·k)m
)

(3.9)
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where k is the momentum of the off-shell tachyon. There are similar terms which have

coefficient Tr (λ2λ1λ3Λ
β). Some of the coefficients an,m and bn,m are [21]

a0,0 = −π
2

6
, b0,0 = −π

2

12
(3.10)

a1,0 = 2ζ(3), a0,1 = 0, b0,1 = b1,0 = −ζ(3)
a1,1 = a0,2 = −7π4/90, a2,0 = −4π4/90, b1,1 =−π4/180, b0,2 =b2,0 =−π4/45

a1,2 = a2,1 =8ζ(5)+4π2ζ(3)/3, a0,3 = 0, a3,0 = 8ζ(5),

b0,3 = −4ζ(5), b1,2 = −8ζ(5)+2π2ζ(3)/3

and bn,m is symmetric.

Now one can write k1·k = k2.k3−(k2+m2)/2 and k2·k = k1.k3−(k2+m2)/2. The terms

k2 + m2 in the vertex (3.9) will be canceled with the k2 + m2 in the denominator of the

tachyon propagator resulting a bunch of contact terms of one RR, two gauge fields and one

tachyon in which we are not interested. Ignoring them, one finds the following tachyon pole:

−32πα′2β′µ′p
ǫi0···ipHi0···ip

(p + 1)!(s′ + t+ u′)
Tr (λ1λ2λ3)

∞
∑

n,m=0

(

(an,m + bn,m)[s′mu′n + s′nu′m]

×
[

− t(k3.ξ2)(k3.ξ1) + (k2.ξ1)(k3.ξ2)s
′ + (k1.ξ2)(k3.ξ1)u

′ + (ξ1.ξ2)
1

2
u′s′
])

(3.11)

where u′ = u+ 1/4 = −α′k2·k3 and s′ = s+ 1/4 = −α′k1·k3. The above amplitude should

be compared with the tachyon pole in (3.6). Let us compare them for some values of n,m.

For n = m = 0, the amplitude (3.11) has the following numerical factor:

− 8(a0,0 + b0,0) = −8

(−π2

6
+

−π2

12

)

= 2π2

Similar term in (3.6) has the numerical factor (2π2c0,0) which is equal to the above number.

At the order of α′, the amplitude (3.11) has the following numerical factor:

− 4(a1,0 + a0,1 + b1,0 + b0,1)(s
′ + u′) = 0

Similar term in (3.6) is proportional to π2c1,0(s + u+ 1/2) which is zero. At the order of

(α′)2, the amplitude (3.11) has the following factor:

−8(a1,1 + b1,1)(s
′)(u′) − 4(a0,2 + a2,0 + b0,2 + b2,0)[(s

′)2 + (u′)2]

=
π4

3
(2s′u′) +

2π4

3
(s′2 + u′2)

Similar term in (3.6) has numerical factor π2c1,1(2s
′u′) + π2(c2,0 + c0,2)(s

′2 + u′2) which is

equal to the above factor using the coefficients (3.4). At the order of α′3, this amplitude

has the following factor:

−4(a3,0 + a0,3 + b0,3 + b3,0)[(s
′)3 + (u′)3] − 4(a1,2 + a2,1 + b1,2 + b2,1)[(s

′)(u′)(s′ + u′)]

= −16π2ξ(3)s′u′(s′ + u′)
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which is equal to corresponding term in (3.6), i.e., π2(c0,3 + c3,0)[(s
′)3 + (u′)3] + π2(c2,1 +

c1,2)s
′u′(s′+u′). Similar comparison can be done for all order of α′. Hence, the field theory

amplitude (3.11) reproduces exactly the infinite tower of the tachyon pole of string theory

amplitude (3.6). This indicates that the momentum expansion of the amplitude CAAT is

consistent with the momentum expansion of the amplitude TTAA found in [21].

3.3 p = n+ 1 case

We finally consider the case p = n + 1. Only A2 in (2.12) is non-zero for this case. The

trace in this amplitude is:

Tr

(

H/ (n)MpΓ
ij

)

= ±32

n!
ǫi0···ip−2ijHi0···ip−2

Substituting this trace in A2, one finds

AAATC = ∓ 32

(p− 1)!
(µ′pβ

′π1/2)Tr (λ1λ2λ3)Hi0···ip−2ǫ
i0···ip

{(

2k2.ξ1k2ip−1ξ2ip

−2k1.ξ2k1ip−1ξ1ip + 2k1.ξ2ξ1ip−1k2ip + 2k2.ξ1ξ2ipk1ip−1 − tξ1ipξ2ip−1

+2ξ1.ξ2k1ipk2ip−1

)

L1 +

(

− 2k3.ξ1k2ip−1ξ2ipL2 − 1 ↔ 2

)}

(3.12)

where again we have normalized the amplitude by (µ′pβ
′π1/2). Apart from the group

factor the amplitude is antisymmetric under interchanging the gauge fields, so the whole

amplitude is zero for abelian gauge group. The amplitude satisfies the Ward identity. The

first six terms have contact terms as well as massless pole in t-channel and the last two

terms in (3.12) have contact terms as well as tachyon poles in s-channel and u-channel.

We are going to analyze all order of the tachyon/massless poles and the leading order and

next to the leading order contact terms in this section. Let us study each case separately.

3.3.1 Tachyon pole

We first consider the tachyon pole. Replacing (3.3) in above amplitude, one finds the

following tachyon poles:

AAATC = ∓ 32

(p− 1)!
(2π3/2)(µ′pβ

′π1/2)Tr (λ1λ2λ3)Hi0···ip−2ǫ
i0···ip (3.13)

×
∞
∑

n=−1

bn

(

(u+ t+ 1/4)n+1

s+ 1/4
(k3.ξ1)k2ip−1ξ2ip − (s+ t+ 1/4)n+1

u+ 1/4
(k3.ξ2)k1ip−1ξ1ip

)

and some contact terms that we consider them in section 3.3.3. Since (3.13) is antisym-

metric under interchanging 1 ↔ 2, we consider only the first term. This term should be

reproduced in field theory by the following Feynman amplitude:

A = V α(Cp−2, A2, T )Gαβ(T )V β(T, T3, A1) (3.14)

where the vertices can be found from the standard nonabelian kinetic term of the tachyon

and from the higher derivative extension of the WZ coupling Cp−2 ∧ F ∧DT found in [4]
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(equation (16) of [4]), i.e.,

V β(T, T3, A1) = iTp(2πα
′)(k3 − k).ξ1Tr (λ3λ1Λ

β)

V α(Cp−2, A2, T ) = 2µ′pβ
′ (2πα

′)2

(p− 1)!
ǫi0···ipHi0···ip−2k2ip−1ξ2ip

∞
∑

n=−1

bn(α′k2 · k)n+1Tr (λ2Λ
α)

where k is the momentum of the off-shell tachyon. Note that the vertex V β(T, T3, A1)

has no higher derivative correction as it arises from the kinetic term of the tachyon. The

amplitude (3.14) then becomes

A = 4µ′pβ
′(2πα′)2

1

(p− 1)!(s + 1
4 )

Tr (λ1λ2λ3)ǫ
i0···ipHi0···ip−2k2ip−1ξ2ip(k3.ξ1)

×
∞
∑

n=−1

bn

(

α′

2

)n+1

(t+ u+ 1/4)n+1

which is exactly the tachyon pole of the string theory amplitude (3.13).

3.3.2 Massless pole

We now consider the massless pole. Replacing the expansion of L1 into (3.12), one finds

the following massless pole in t-channel:

AAATC = ±
32µ′pβ

′π2

t(p− 1)!
Tr (λ1λ2λ3)Hi0···ip−2ǫ

i0···ip

∞
∑

n=−1

bn(u+ s+ 1/2)n+1

[

2k2.ξ1k2ip−1ξ2ip

−2k1.ξ2k1ip−1ξ1ip + 2k1.ξ2ξ1ip−1k2ip + 2k2.ξ1ξ2ipk1ip−1 + 2ξ1.ξ2k1ipk2ip−1

]

(3.15)

and some contact terms that we consider them in section 3.3.3. In field theory, the massless

pole is given by the following Feynman amplitude:

A = V i
α(Cp−2, T3, A)Gij

αβ(A)V j
β (A,A1, A2) (3.16)

The vertices and propagator are

V i
α(Cp−2, T3, A) = 2µ′pβ

′(2πα′)2
1

(p−1)!
ǫi0···ip−1iHi0···ip−2kip−1

∞
∑

n=−1

bn(α′k3 · k)n+1Tr (λ3Λ
α)

V j
β (A,A1, A2) =−iTp(2πα

′)2Tr (λ1λ2Λβ)[ξj
1(k1 − k).ξ2 + ξj

2(k − k2).ξ1 + ξ1.ξ2(k2 − k1)
j ]

Gij
αβ(A) =

iδαβδ
ij

(2πα′)2Tp(t)

where k is momentum of the off-shell gauge field. Here again the vertex V i
α(Cp−2, T3, A) has

been found from the higher derivative extension of the WZ coupling Cp−2 ∧ F ∧DT that

has been found in [4]. Note again that the vertex V j
β (A,A1, A2) has no higher derivative

correction as it arises from the kinetic term of the gauge field. Replacing them in the
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amplitude (3.16), one finds

A = (2πα′)2
2µ′pβ

′

(p− 1)!t
ǫi0···ip−1iHi0···ip−2Tr (λ1λ2λ3)

∞
∑

n=−1

bn

(

α′

2

)n+1

(s+ u+ 1/2)n+1

×
(

2(k2.ξ1)k1ip−1ξ2i − 2(k1.ξ2)k1ip−1ξ1i − 2(k1.ξ2)k2ip−1ξ1i + 2(k2.ξ1)ξ2ik2ip−1

−2(ξ1.ξ2)k1ip−1k2i

)

(3.17)

where we have used
∑

α λ
α
ijλ

α
kl = δikδjl. This is exactly the massless pole of the string

theory amplitude (3.15). This indicates that the momentum expansion of the S-matrix

element CAAT in this paper is consistent with the momentum expansion of the S-matrix

element CAT found in [4].

3.3.3 Contact terms

Replacing (3.3) into (3.12), one finds the following contact terms at leading order and next

to the leading order:

AAATC = ∓ 32

(p− 1)!
(µ′pβ

′π2)Tr (λ1λ2λ3)Hi0···ip−2ǫ
i0···ip

{

ξ1ipξ2ip−1 −
π2

6

(

2k2.ξ1k2ip−1ξ2ip

−2k1.ξ2k1ip−1ξ1ip + 2k1.ξ2ξ1ip−1k2ip + 2k2.ξ1ξ2ipk1ip−1 − tξ1ipξ2ip−1

+2ξ1.ξ2k1ipk2ip−1

)[

t+ 2(s+ u+ 1/2)

]

+
π2

6
ξ1ipξ2ip−1(s+ u+ 1/2)2

+

(

π2

3
k3.ξ1k2ip−1ξ2ip

[

2(t+ u+ 1/4) + s+ 1/4

]

− [1 ↔ 2]

)}

(3.18)

The first term is reproduced by CAAT coupling of the following gauge invariant coupling:

2β′µ′p(2πα
′)2Tr (Cp−2 ∧ F ∧DT ) (3.19)

which is exactly given by the WZ terms (1.2) after expanding the exponential and using

the multiplication rule of the supermatrices [4]. The other terms in (3.18) should be related

to the higher derivative extension of the above coupling. However, there are many other

higher derivative gauge invariant couplings which have contribution to the contact terms

of the S-matrix element of CAAT . Comparing them with the string theory contact terms

(3.18), one can not fix their coefficients uniquely. One particular set of higher derivative

gauge invariant couplings that reproduce the contact terms in (3.18) are the following:

− 1

12
β′µ′p(2πα

′)4
[

− iDβFaαD
αFbβDcT +

3i

2
FacDαFβbD

αDβT − 3i

2
DαFβbFacD

αDβT

−1

2
DaD

αDcFbαDβD
βT + FaαD

βDαDβDbDcT − 1

2
DaD

αDβD
βFbαDcT

+DbDcFaαD
βDαDβT + 4DαDaDcFβbDαD

βT − 1

2
DaFαβDbD

αDβDcT

−DaD
βDβDcFbαD

αT + 2DbD
αDβFaαDβDcT +DαDαDcFβbD

βDaT

+DaD
βDβFbαD

αDcT +
1

2
DβDαDβDcFaαDbT

−1

2
DαDβFabDαDβDcT

]

1

(p − 2)!
Ci0···ip−3ǫ

i0···ip−3abc

(3.20)
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where DaT = ∂aT − i[Aa, T ]. Among the couplings in (3.20), only the last coupling has

non-zero on-shell CTA coupling. This coupling has been found in [4] from the S-matrix

element of one RR, one gauge and one tachyon vertex operators. This coupling has been

also used in the previous section to verify that the tachyon/massless poles in (3.12) are

reproduced by the higher derivative couplings in field theory. All coupling in (3.20) are at

(α′)4 order. The next order terms should be at (α′)5 order, and so on.

As we have mentioned in the Introduction section, the WZ couplings can also be found

using the BSFT. In that framework, it has been argued in [2] when the RR field is constant,

there is no higher derivative correction to the WZ couplings. So one may expect that the

above higher derivative WZ couplings should be zero for constant RR field. However, as

we have mentioned before, the above couplings are valid when pip
i → 1/4. So they can

not be compared with the pip
i = 0 result of the BSFT.
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